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It proves convenient to rewrite the Brillouin function in the form
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where 𝑁 = 2𝐽 = 1,2,3, … ranges over all positive integers.

There is one possible pole for each pole of each coth term. The poles of coth 𝑥
occur on the imaginary axis at the zeros of sinh 𝑥, the two nearest to the origin

being at 𝑥 = ±𝜋𝑖. The value x = 0 is a removable singularity as is clear from its

series expansion. These possible poles occur at
𝑁 + 1

𝑁
𝑥 = 𝑚′𝜋𝑖,

1

𝑁
𝑥 = 𝑚𝜋𝑖,

where 𝑚′ and 𝑚 are integers.

The convergence is only up to the smallest radius of convergence, namely,

𝒙 <
𝑁

𝑁+1
𝜋 i.e. 𝒙 <

1

2
𝜋 for 𝑁 = 1, 𝑥 <

2

3
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We can demonstrate the following inequalities

𝔏 𝑥 ≡ 𝔅∞ 𝑥 < 𝔅𝐽1
𝑥 < 𝔅𝐽2

𝑥 < 1 ≡ 𝔅0 𝑥

for 0 < 𝐽2 < 𝐽1 < ∞ and 𝑥 > 0.

For 𝐽 = 1/2 the exact result is given by 𝔅1/2
−1 𝑦 = tanh−1 𝑦 =
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For 𝐽 = 1 the exact result is given by 𝔅1
−1 𝑦 =log

𝑦+ 4−3𝑦2
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The inverse Brillouin function has series expansion
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We may remove the logarithmic singularities as 𝑦 → ±1 from 𝔅𝐽
−1(𝑦) by defining

a reduced inverse Brillouin function 𝐹𝐽(𝑦) by

𝐹𝐽 𝑦 = 𝔅𝐽
−1 𝑦 − 𝐽 log

1 + 𝑦

1 − 𝑦
.

We see that 𝐹𝐽(𝑦) has series expansion
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Critical points occur when the derivatives either vanish or become infinite.

We wish to investigate the critical points of 𝑥 = 𝔅𝐽
−1 𝑦 which occur when
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= 0 or ∞. Now
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we can find 𝑑𝔅𝐽 𝑥 /𝑑𝑥 by differentiating (1) to obtain
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The singularities occur for those values of 𝑥 satisfying

sinh
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• The program is based on the use of the Brillouin function 𝔅𝐽 with range [−1,1] which

we divide approximately into the regions [−0.9999, −0.99], [−0.99,0.99] and [0.99,0.9999].

• We first consider the range [−0.99,0.99] of the Brillouin function and derive a minimal

value of 𝑥 that would allow us to define its corresponding domain −𝑥min, 𝑥min .

• For each division in the calculated domain −𝑥min, 𝑥min we derive values

corresponding to the range of the Brillouin function 𝔅𝐽(−𝑥min), 𝔅𝐽(𝑥min) ≈ [−0.99,0.99].

• Using the argument 𝔅𝐽
−1 𝔅𝐽 𝑥 = 𝑥 we define the inverse Brillouin function with

domain 𝔅𝐽(−𝑥min), 𝔅𝐽(𝑥min) and corresponding range −𝑥min, 𝑥min .

• To remove the logarithimic singularities at 𝑦 → ±1 we employ the function

• 𝐽 log ((1 + 𝑦)/(1 − 𝑦)) again with domain 𝔅𝐽(−𝑥min), 𝔅𝐽(𝑥min) .

• Each region is fitted using a polynomial of the form 𝑎1𝑥 + 𝑎3𝑥
3 + 𝑎5𝑥

5 + … , the program

continues to iterate increasing the size of the polynomial fit until the error of the region

[−0.99,0.99] is within a specified accuracy. The degree of this polynomial is then used

to curve fit the regions at the two extremes −0.9999,−0.99 and [0.99,0.9999].

Plot of the four complex conjugate

singularities for 𝔅3/2
−1 𝑦 nearest the

origin at

𝑦 = ±1.110063558 ± 0.1000943686𝑖.

The Brillouin function, and its classical limit the Langevin function, and their inverses, are

commonly employed in statistical and quantum mechanical studies of the magnetization of

idealised paramagnetic and ferromagnetic materials. The Brillouin function is used to describe the

dependence of the magnetic field on the total angular momentum 𝐽 of the material.

The Brillouin function is defined by
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where 𝐽 is the total angular momentum, which may take the values 0,
1

2
, 1,

3

2
, 2, … . This has the

series expansion
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The Brillouin function can be re-expressed in terms of the Langevin function as
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The inverse Langevin and Brillouin functions cannot be expressed in closed form and therefore

many approximations have been developed to facilitate its application in many theoretical models.

Calculated percentage errors for the polynomial fits when 

compared to the function 𝐹𝐽(𝑦)

In the classical limit 𝐽 → ∞ , 𝔅𝐽 𝑥 → 𝔏 𝑥 , the Langevin

function which is defined by 𝔏 𝑥 = coth 𝑥 − 1/𝑥 .

Analysis of the Brillouin function and its inverse


