

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Raeyco Lab Equipment Systems Management Ltd.
4288 Lozells Avenue, Suite 205
Burnaby, BC V5A 0C7
Canada

Fulfils the requirements of

ISO/IEC 17025:2017

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document.

The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 14 January 2028

Certificate Number: AC-2834

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Raeyco Lab Equipment Systems Management Ltd.

4288 Lozells Avenue, Suite 205

Burnaby, BC V5A 0C7

Jade Chui (604) 444-0004 qa@raeyco.com

CALIBRATION

ISO/IEC 17025 Accreditation Granted: **23 December 2025**

Certificate Number: **AC-2834**

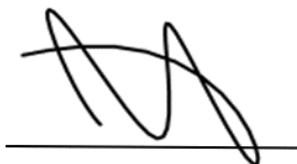
Certificate Expiry Date: **14 January 2028**

Mass and Mass Related

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Piston-operated Volumetric Apparatus ^{1,2} (Pipettes)	(1 to 10) µL (10 to 100) µL (100 to 1 000) µL (1 000 to 10 000) µL	0.37 % of reading + 29 nL 0.46 % of reading + 20 nL 0.22 % of reading + 26 nL 0.15 % of reading + 1 µL	Analytical Balance and Gravimetric Method per ISO 8655.
Balances and Scales ^{1,2} (0.001 mg resolution) (0.1 mg resolution) (5 mg resolution)	(1 to 10) mg (10 to 100) mg (100 to 1 000) mg (1 to 10) g (10 to 100) g (100 to 1 000) g (1 to 10) kg (10 to 25) kg	17 µg – 0.067 % of reading 10 µg 0.000 14 % of reading + 10 µg 0.000 55 % of reading + 3.2 µg 61 µg – 0.000 027 % of reading 0.000 42 % of reading – 0.39 mg 0.001 3 % of reading – 9.2 mg 0.001 8 % of reading – 60 mg	ASTM E617/OIML R111 appropriate class weights and internal calibration procedure utilized in the calibration of the weighing system.
Weights ¹ (Mass Determination)	(1 to 10) mg (10 to 100) mg (100 to 1 000) mg (1 to 10) g (10 to 100) g (100 to 1 000) g (1 to 10) kg (10 to 25) kg	0.005 6 % of reading + 8.6 µg 9.2 µg – 0.000 44 % of reading 9.9 µg – 0.001 1 % of reading 0.000 15 % of reading + 6 µg 0.000 002 2 % of reading + 21 µg 0.000 15 % of reading – 0.13 mg 0.000 5 % of reading – 3.6 mg 0.001 4 % of reading – 94 mg	Electronic Balance and ASTM E617 / OIML R111 Class Weights per internal calibration procedure.

Thermodynamic

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Temperature – Measure ^{1,2}	(-80 to 200) °C (200 to 500) °C	0.028 °C 0.015 % of reading – 0.002 °C	Comparison to Digital Thermometer with PRT
Humidity – Measure/Source ^{1,2}	(10 to 90) %RH	0.5 % of reading + 1.3 %RH	Comparison to Master Thermohygrometer


Time and Frequency

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Centrifuge ^{1,2,3}	(1 000 to 2 000) rpm (2 000 to 3 000) rpm (3 000 to 5 000) rpm (5 000 to 15 000) rpm	0.17 % of reading – 0.4 rpm 0.08 % of reading + 1.4 rpm 0.12 % of reading + 0.2 rpm 0.11 % of reading + 0.6 rpm	Comparison to Optical Tachometer

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 ($k=2$), corresponding to a confidence level of approximately 95%.

Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
2. Raeyco Lab Equipment Systems Management maintains ISO 17025 qualified resident technicians in Toronto, ON, Hamilton, ON, London, ON, Winnipeg, MB, and Fredericton, NB.
3. rpm = revolutions per minute.
4. Unless otherwise specified in the far-right column, the calibration method/procedure utilized by the laboratory was written and validated internally.

Jason Stine, Vice President